
Roofline Scaling Trajectories: A Method for Parallel
Application and Architectural Performance Analysis

Khaled Z. Ibrahim, Samuel Williams, Leonid Oliker
Lawrence Berkeley National Laboratory

One Cyclotron Road, Berkeley, CA 94720, USA
{kzibrahim, swwilliams, loliker}@lbl.gov

Abstract—The end of Dennard scaling signaled a shift in HPC
supercomputer architectures from systems built from single-
core processor architectures to systems built from multicore
and eventually manycore architectures. This transition substan-
tially complicated performance optimization and analysis as new
programming models were created, new scaling methodologies
deployed, and on-chip contention became a bottleneck to per-
formance. Existing distributed memory performance models like
logP and logGP were unable to capture this contention. The
Roofline model was created to address this contention and its
interplay with locality. However, to date, the Roofline model has
focused on full-node concurrency. In this paper, we extend the
Roofline model to capture the effects of concurrency on data
locality and on-chip contention. We demonstrate the value of
this new technique by evaluating the NAS parallel benchmarks
on both multicore and manycore architectures under both strong-
and weak-scaling regimes. In order to quantify the interplay
between programming model and locality, we evaluate scaling
under both the OpenMP and flat MPI programming models.

Index Terms—Roofline Model, Performance Analysis, Parallel
Scaling, OpenMP.

I. INTRODUCTION

Dennard scaling enabled energy-efficient scaling from one
CMOS process generation to the next [1]. This scaling trend
was exhausted by 2005 at which point computer architects
were forced to reevaluate architectural paradigms and priori-
tize those techniques that maximized energy efficiency rather
than single thread performance. This revolution in computer
architecture gave birth to multicore and eventually manycore
processors where dozens of cores are integrated on a single
chip. Whereas multicore architectures tended to be based on
large superscalar cores with large shared last-level caches,
manycore architectures were further energy-optimized to max-
imize performance and concurrency through the use of simple
cores, wide vector units, and a sea of private caches that
motivated data parallelism and coarse-grained partitioning of
computation.

The transition from supercomputers built from single-core
nodes to multi- and manycore nodes significantly complicated
performance optimization and analysis as new programming
models like OpenMP were deployed, scaling regimes could
be applied at the core, node, or system level, and on-chip
contention emerged as a potential bottleneck to performance.

Many programmers were incentivized to experiment with
OpenMP only to find that performance paled when compared
to flat MPI on a chip (one process per core). Without a per-
formance analysis methodology capable of understanding the
interplay between programming model, locality, concurrency,
and architecture, they were generally unable to effectively
remedy their performance gap.

In 2008, the Roofline model was created to understand
the interplay between locality, bandwidth, and computation
across a wide variety of architectures [2], [3]. However, prior
Roofline research was typically used to understand the ultimate
performance potential of a machine and not the interplay
between concurrency and locality — a key metric in the
application optimization and architecture co-design processes.

In this work, we introduce the roofline scaling trajectory
technique to analyze the performance on multi/many-core
architectures. We show that these trajectories help in assessing
the application leverage of the cache hierarchy and how will
the architecture is helping or impeding the scaling of an
application. We present the application of the proposed method
on the NAS Parallel Benchmarks [4]. The trajectory analysis
enables applying the roofline method to workloads with integer
or arbitrary user-defined operations.

The rest of this paper is organized as follows: We discuss
the motivation for this work in § II. We introduce the roofline
scaling trajectory method in § III. In § IV, we present the
experimental setup and the workloads. In § V, we analyze
the application of the proposed method on the NPB suite. We
conclude in § VII after discussing related work in § VI.

II. MOTIVATION

Performance analysis is notoriously difficult especially in
the many-core era. It is becoming critical to driving the sys-
tem efficiency because architectural efficiency from improve-
ments in transistor miniaturization, lithographic advancement
in CMOS technology, is slowing down.

Many-core architectures have multiple features that could
influence the application performance. Among notable features
are simple core design, reliance on distributed caches, and the
adoption of memory technologies that are throughput opti-
mized. Simpler core designs typically necessitate the reliance
on SIMD/vectorization as a means for improving instruction

level parallelism. The use of distributed cache/local storage
enables servicing a larger number of memory requests con-
currently. On the other hand, maintaining coherence between
these distributed caches could result in reduced effective cache
capacity, due to the replicated state of frequently read data, or
longer latency to service memory write requests due to the
multi-hop transactions in the directory-based cache coherence
protocols that are typically used for distributed caches. An-
other challenge is feeding data to many-core architectures to
make them busy. Some memory technologies are more opti-
mized for throughput than latency. These memory technologies
make it possible to handle many concurrent requests but not to
improve on the latency to service the request and may increase
performance variability as well.

Understanding the performance limits intuitively is a chal-
lenge with these architectural developments especially if we
treat each code independently. In HPC, relatively few compu-
tational patterns dominate scientific computing. The computa-
tional dwarfs report from Berkeley [5] provides an excellent
survey of these patterns. We can focus the analysis on few
computational patterns and gain insight into a wide range of
usage patterns.

III. EVALUATION METHOD

In this paper, we introduce the roofline scaling trajectory
technique for analyzing the performance and scalability of
parallel applications. We also extend the use of roofline plots
from being solely used for floating-point operations to any
user-defined operation. Such an extension allows analysis of
a broader set of irregular integer-based applications.

In the context of this work, our primary focus is assessing
the change in application behavior while migrating from multi-
core to many-core architectures (lightweight cores, distributed
private caches, etc...). Rather than relying on theoretical limits
and models for application and machine characterization, we
rely on empirical measurements including the use of LIKWID
to measure the DRAM performance counters [6], and the Intel
SDE for instruction analysis [7].

A. Roofline Scaling Trajectories

Weak-scaling and strong-scaling are typically used to as-
sess the efficiency of utilizing the hardware resources as we
increase the level of concurrency. When weak-scaling, one
aims for constant run time (linearly increasing flop rates) for
problem sizes proportional to concurrency. Conversely, when
strong-scaling, one hopes for run times inversely proportional
to concurrency for fixed problem sizes. Unfortunately, it is of-
ten difficult to ascertain the root cause of any sub-linear scaling
behavior in either regime. Often one employs a variety of tools
to identify which components of the system or application
are either not scaling or have become the bottleneck. These
includes tools to analyze the memory hierarchy or the impact
of communication on total run time. The roofline scaling
trajectory focuses on visualizing the scaling behavior and
identifying the effects of locality and limited cache capacity
on the observed application performance. Additionally, these

△x

△y

△x > 0: Distributed Cache → cache filtering due to cache capacity.
Shared Cache → common working set, cross-thread prefetching.

△x < 0: Cache conflicts, false sharing and coherence traffic

△y > 0: Increased compute power,
FU, vectorization, etc.
(limited by roofline)

△y < 0: runtime overhead
(sync, schedule, msg. proc)

Single threaded

Scattered multi-threaded
(Shared/distributed LLC)

hyper-threaded
(Shared L1)

Fig. 1: Roofline Scaling Trajectory. As we double the com-
putational resources we expect a corresponding doubling of
performance (∆y), but the observed performance is typically
influenced by the change in computational intensity (∆x).

plots could identify the potential advantage of leveraging a
particular cache hierarchy for a given computational pattern
and could also steer optimization efforts towards those with
the highest possible gains.

We leverage the roofline plots [2], which are used to analyze
the observed performance of an application against machine
limits. The x-axis is the arithmetic (or computational1) in-
tensity, computed as a ratio of floating point operations to
transferred bytes from the memory system. The y-axis is
observed performance. Machine limits, such as flop rate or
memory bandwidth define the maximum attainable by an
application, which is a function of the application’s arithmetic
intensity.

The roofline scaling trajectory tracks the scaling of an
application. Scaling can be decomposed into transitions of ∆x
and ∆y. As we double the level of concurrency, we ideally
expect ∆x to be 0 (no change in cache locality) and ∆y = 2×
(linear increase in performance). This idealized scaling be-
havior is also assumed to be unconstrained by the overheads
of the language, synchronization, scheduling, message setup,
etc. In reality, the nature of distributed vs. centralized cache
hierarchies may constrain locality, and the limitations of finite
memory and cache bandwidths may constrain the performance
gain to less than 2×.

Although one could look at raw values extracted from
performance counters to identify the causes of limited scal-
ability, the process could be cumbersome and error-prone.
Visualization allows efficient and potentially more intuitive

1We extend the arithmetic intensity use in the Roofline Model by using
the general term computational intensity, where a computation could be any
application defined operation.

analysis. The process requires building intuition about the
scaling behavior possible moves and their interpretation.

We describe the architectural and scaling behaviors for each
of the four possible directions an application may move with
increased concurrency.

∆x > 0: When strong scaling, this transition is indicative
of increased temporal locality (the number of floating-point
operations has remained constant, so data movement must have
decreased). This behavior can occur with distributed cache
hierarchies as the aggregate cache capacity increases with
increased concurrency. Eventually, a working set can fit in
cache, and DRAM data movement is reduced. The key is to
maintain such behavior is to avoid thrashing the working set.
If the cache hierarchy involves some sharing, each processing
element should limit the working-set in the last level cache to
its fair share.

∆x < 0: This transition is an indication of a loss of
temporal locality during the scaling experiments, which could
happen for various causes. First, when strong-scaling on
shared cache hierarchies, if the per-thread working set is not
sufficiently small, the aggregate working set of all threads
can eventually exceed the last-level cache capacity resulting in
superfluous data movement. A similar effect can occur when
weak scaling. Although the application strategy in dealing with
the memory hierarchy is very influential on performance, the
memory organization and whether it has a distributed or shared
hierarchy could have a significant impact on the ability to
leverage locality and as such the scaling behavior. For instance,
a distributed cache is useful in reducing the interference
or cache thrashing effect because it provides some locality
isolation. On the other hand, distributed caches are challenged
when attempting to capture a large shared working set as
the same data may be replicated in multiple private caches.
Effectively, the cache capacity could look much smaller than
the aggregate capacities of individual caches.

∆y > 0: The increase in the y direction reflects the
utilization of the excess compute resources. The transition
could exceed the added compute resources if such transition
carries an accompanying ∆x > 0. In the Roofline Model,
the ∆y transitions are typically bound by one of the system
limits (memory or compute), depending on the computational
intensity.

∆y < 0: A decrease in the y direction indicates some
runtime or architectural overhead that impedes increased per-
formance. Such effects can arise from programming model
(e.g. excessive synchronization overheads, substantial com-
munication setup time, etc.), or contention when accessing
architectural resources (e.g. L1/L2 or reorder buffer in hyper-
threaded architectures).

Although each concurrency scaling transition could see
independent effects on locality and performance (positive or
negative), there is also a potential coupling between ∆x and
∆y transitions. If the application performance turns over at
high concurrency (∆y < 0), our roofline trajectory could
identify whether a ∆x < 0 effect is causing the observed
∆y < 0 effect on performance. This becomes more apparent

when working close to the roofline at full concurrency.
For this paper, we will focus on the scaling trajectory

considering only the DRAM arithmetic intensity (locality
effects captured by the last level of cache). We designate pure
∆y scaling (∆x = 0) as an ideal behavior that would require
some performance isolation between concurrent activities in
the system. We identify three sources of this performance
isolation:

• Algorithms: This performance isolation is the hardest to
achieve except in special cases, where the application
developer decomposes the problem into smaller tasks that
maximize the data reuse within the cache hierarchy. Lack
of algorithmic isolation could cause severe degradation in
computational intensity as we scale computation.

• Programming models: Distributed programming models
such as MPI are known to force the programmer into
the mindset of creating isolated tasks that communicate
only at specific times explicitly using communication
calls. This decomposition proves beneficial not only in
a distributed computing environment but also in a shared
memory environment where NUMA locality exists.

• Architectures: Cache hierarchy and memory could pro-
vide performance isolation through the use of distributed
caches. As such, each core has its own private space and
no cache thrashing is possible.

B. Non-Floating-Point Roofline Trajectories

Roofline analysis typically targets floating-point computa-
tions. This implies the use of floating-point operations as both
the performance metric as well as a numerator of the arithmetic
intensity ratio. However, many applications do not relying on
measuring or performing floating-point operations, and thus
one is motivated to use non-floating-point metrics (MIPS) or
application-specific metrics. For instance, whereas one often
uses traversed edges per seconds (TEPS) as a performance
metric in graph analytics, one might use random numbers
generated per second in other fields. For such applications, it
is often difficult to define the roofline for operations based
on the raw performance characterization of the underlying
architecture and thus we may define performance and intensity
relative to these metrics using application-specific internal
performance metrics. Nevertheless, we still find applying the
scaling trajectory analysis on roofline plot as an insightful
tool for performance analysis, and will show that the scaling
behavior of applications with non-floating-point metrics could
have the same pitfalls and trends observed in floating-point
intensive applications.

IV. EXPERIMENTAL SETUP

A. Benchmarking Suite

In this paper, we used the NAS Parallel Benchmarks
(NPB) [4] for evaluating scaling effects among architectural
variants. These benchmarks represent a broad set of com-
putational patterns. FT represents spectral methods, CG for
sparse linear algebra, LU for solving a regular-sparse lower
and upper triangular system, MG for multi-grid PDE solver

TABLE I: Systems used in this study.

Cori I Cori II
Processor Intel Intel

Haswell KNL
Clock (GHz) 2.3 1.4

NUMA×Cores 2×16 1×68
DP GFlop/s 1178 2611

D$/core(KB) 64+256 64+1024 (per tile, 2 cores)
LL$/chip(MB) 30
Memory (GB) 128 DDR4 16 MCDRAM+ 96 DDR4

System and System Software
Nodes 2,388 9,688

Interconnect Dragonfly
Compiler Intel 18.0.1

using a hierarchy of meshes, in addition to multiple structured
grid methods in the mini-apps SP, BT. NPB also includes
unstructured adaptive mesh benchmark, called UA. Similar
to CG, its memory access pattern is irregular. In addition to
the floating-point based scientific applications, NPB includes
an integer sorting benchmark, IS, which is used in many
scientific applications. For performance measurement, NPB
measures the performance based on the rate of performing
mega operations per seconds.

B. System Setup

We use NERSC’s Cori supercomputer as our evaluation
platform. Cori is a Cray XC40 system that employs both multi-
core Intel Haswell and many-core Intel Xeon Phi ”Knight’s
Landing” processors. The system leverages the Cray Aries
network to connect 2,388 Haswell nodes and 9,688 KNL
nodes. Table I gives brief description of the architectural
features of the Cori nodes.

V. TRAJECTORY ANALYSIS FOR COMPUTATIONAL
KERNELS

One of the most critical factors for performance is the
efficiency in utilizing the cache (or memory) hierarchy. On
roofline plots, the cache efficiency manifests as the computa-
tional intensity. The higher the efficiency of utilizing the cache,
the higher the computational intensity. Obviously, the intensity
is influenced by the kind of computation at hand and whether it
is feasible to tile the computation to better leverage temporal
locality. For a kernel that efficiently exploits the cache, we
expect our Roofline trajectory to move vertically. Moreover,
changing the problem size should have minimal impact on the
computational intensity, unless the problem could fit entirely
within the last-level cache.

Reduction in the arithmetic intensity (∆x < 0 transition)
is not a desirable behavior, whether we do strong or weak
scaling. A ∆x > 0 transition while scaling could result from
the increase of cache capacity. It could also result from better
problem decomposition while scaling. While such a transition
has favorable performance advantages, these advantages may
be difficult to maintain asymptotically.

A. Strong-scaling Trajectories

Strong scaling involves changing the computational re-
sources while fixing the problem size per node. A real test

to the algorithm temporal-optimization is whether it could
manifest a vertical trajectory on an architecture with a shared
last-level cache.

A couple of kernels show such behavior, using their
OpenMP implementation: MG and FT. For both, we notice
that the trajectories are dominated by pure ∆y transitions.
Only when we start using hyper-threading, do we observe
operational intensity degradation due to the increase in data
movement. In Figure 2, we present the benchmarks that
exhibits relatively regular behavior. For MG, the KNL and
Haswell arithmetic intensities are close to each other due to
the exploitation of tiling. The scaling is dominated by vertical
transitions that continue until hitting the memory roofline.

For FT, we observe that the arithmetic intensity increases
with the amount cached data. Given that the computation
involves a transpose operation, we observe that the shared
cache, in Haswell, helps in doing it efficiently. With the
distributed cache in KNL, we observe a ∆x transition, change
in arithmetic intensity, with the increase in the data set size.
The scaling for CG, with irregular access patterns, benefits
from the shared cache if the data fits in cache. Concurrency in
accessing the shared cache causes a diagonal scaling behavior
(∆x 6= 0) if a significant portion of the active dataset fits
in cache, i.e. Class A. With Distributed cache, we observe
∆x > 0 while strong scaling and the performance improves as
we increase the level of concurrency because we’re increasing
cache capacity, while not suffering from cache thrashing.
Eventually, the scaling in both architectures converge to the
same computational intensity for sufficiently large problems.
Larger datasets cause a vertical scaling transitions that are
bounded by the memory latency.

In Figure 3, we shows a different set of benchmarks with a
stronger influence of the cache hierarchy. For mini-application,
such as SP and BT, the scaling trajectory starts with an initial
positive ∆x due to the increase in cache capacity2. Increasing
concurrency causes ∆x < 0 scaling transition associated with
∆y > 0. The challenge in these mini-applications is the
difficulty in managing locality beyond a single kernel. Moving
from one computational phase to the other would result in
evicting the working set from the cache. For these kernels, the
KNL distributed cache provides a lower initial computational
intensity that keeps improving as we increase the concurrency
level. Interference in the L1 cache reverses such scaling trend,
once we start using hyper-threading. LU exhibits the most
significant ∆x transitions during strong scaling on the KNL
due to the performance isolation in the distributed cache. LU
uses scratch memory to condense scattered data from a global
data structure. Some of data structures, with 5 elements in
its innermost dimensions, exhibit false-sharing among threads
creating either prefetching or interference effect, depending on
the cache hierarchy.

In Figure 4, we show the same set of applications im-
plemented using MPI. We notice improvement of the peak

2The initial ∆x > 0 is due to scattering threads across sockets. With dual
socket systems, the full cache capacity is fully utilized only if we have at
least two threads.

MG FT CG
H

as
w

el
l

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

●●
●

roofline_summary_mg_lbl

● Class A
Class B
Class C

c1

c2

c4

c8
c16c32c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

●

●●

roofline_summary_ft_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16
c32c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

●

●●

roofline_summary_cg_lbl

● Class A
Class B
Class C

c1

c2

c4

c8
c16

c32c64

K
N

L 0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

●

●

●●
●

roofline_summary_mg_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16

c32
c64c128
c256

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

●

●

●

●
●

roofline_summary_ft_lbl

● Class A
Class B
Class C

c1
c2

c4

c8

c16

c32

c64
c128

c256

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

●

●

●●
●

roofline_summary_cg_lbl

● Class A
Class B
Class C

c1
c2

c4

c8

c16

c32

c64c128
c256

Fig. 2: Scaling trajectories for OpenMP-based kernels MG, FT, and CG on KNL vs. Haswell. MG and FT exhibit regular
scaling behavior. CG benefits from the shared cache if the data fit within the LLC.

performance, especially with the shared cache of Haswell. In
this case, the programming model isolation, i.e. the use of MPI
that eliminates the implicit communication between computing
processors, partially helps in addressing the scaling problem,
but the trends of computational intensity change with the con-
currency level is not eliminated. MPI can help in partitioning
the problem, which reduces the dataset interference by each
compute processor, but it cannot eliminate the loss of temporal
locality due to successive kernel invocations.

The cache hierarchy plays a major role in the ∆x transitions
in the scaling trajectory, which influence the ∆y transitions for
this set of applications. Distributed caches provide the perfor-
mance isolation that facilitates reducing the ∆x transitions.

In Figure 5, we show the application of our roofline trajec-
tory methodology for applications with user-defined operation.
In such case, we can determine only the memory rooflines, but
the computational capabilities would need to be user-defined.
Both IS and UA generate irregular accesses. Following other
floating-point benchmarks, UA experiences scaling that in-
volves ∆x < 0 as we increase the concurrency on Haswell.
Although sorting algorithms, such as IS, typically generate
irregular access, we do not notice much ∆x change while
scaling due to the use of bucket sorting. The cache filters most
of the irregular accesses and the traffic to memory remains
stable while strong scaling. We also notice severe performance
degradation once we start exploiting hyper-threading. Signifi-

cant performance drop is observed on the KNL architecture.

B. Weak-scaling Trajectories

Weak scaling involves changing the problem size as we
increase the computation resources. NPB increases problem
sizes by 4× as we change the problem size from one class to
the other up to class C. Weak scaling plot reduces the impact
of runtime overheads on performance.

Using our roofline trajectory methodology to assess weak
scaling could provide insights into the benchmark dependence
on temporal locality. As shown in Figure 6, LU has a ∆x > 0
transitions during weak-scaling on the KNL cache hierarchy.
Haswell’s trajectory follows the opposite trend ∆x < 0. This
behavior indicates that LU has a common working set between
the compute threads. This attribute is difficult to capture using
code inspection because such common dataset stems from
false sharing. Interference could reduce the effectiveness of
keeping this working set in the cache. Only a few applications
have weak scaling without a change in ∆x, e.g. IS.

The weak-scaling analysis on KNL in particular could pro-
vide insights into what kind of cache interference is happening;
whether the interference is between the threads involved in the
computation, or the cache eviction happens due to changing
phases. On KNL, a ∆x < 0 when threads are scattered
indicates self-interference, i.e. cache evictions between dif-
ferent phases of computations. We observed such behavior

LU BT SP
H

as
w

el
l

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

●

●●

roofline_summary_lu_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16
c32c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

●

●●

roofline_summary_bt_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16
c32c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c2

c4

c8
c16

c32c64

K
N

L 0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

●

●

●
●

●

roofline_summary_lu_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16

c32
c64c128

c256

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

●

●

●

●

●

roofline_summary_bt_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16

c32

c64
c128

c256

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

●

●

●

●

●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1
c2

c4

c8

c16

c32

c64
c128
c256

Fig. 3: Scaling trajectories for OpenMP-based FT kernel and mini-applications BT, SP on KNL vs. Haswell. These benchmarks
show sensitivity to cache hierarchy and exhibit significant ∆x transitions.

with FT. For instance, SP self-evict part of its working set in
weak-scaling experiments, while BT does not experience such
behavior. A ∆x > 0 indicates a shared working set between
the threads, where one thread effectively prefetches data for
other threads.

C. Limits of Vertical Transitions

We have observed that most applications are not exceeding
the computational roofline of scalar operations. While this may
not be a limitation if the application is memory bound, some
applications are not memory bound on either the Haswell or
KNL systems. We also notice that the performance relative
to peak scalar performance is lower on KNL compared with
Haswell. Not leveraging vectorization is a severe limitation
especially on the KNL architecture where 16× of the full
computational power is at stake.

Another critical factor is how effective is the compiler in
vectorizing the application code, or how amenable is the appli-
cation to vectorization. In Figure 7, we report the percentage
of scalar floating-point operations, which were not vectorized,
as a percentage of the total floating-point operations. The
reported values are based on Intel SDE profiling. The impact
of having a large percentage of scalar operations is significant
on architectures where vector processing units are responsible
for executing the scalar operations. On KNL, only one of the
two VPUs can execute scalar and legacy vector operations [8],

such as SSE. We notice that well-vectorized benchmarks, such
as MG and FT, are memory bound. As such, they did not
benefit much from their efficient vectorization. Benchmarks
that are compute bound, such as LU and BT, have a large
percentage of scalar flops. Given the generated code may not
fully utilize functional units in performing application floating
point operations, we need to consider the efficiency of utilizing
vectorization units. We define vectorization efficiency as
veceff = (total flops−scalar flops)

(vector uops×max flops per uop)
The numerator is a measure of the application vectorized

instructions. The denominator is proportional to the vec-
tor micro-ops (µops), involving various vectorization widths,
which flow through the VPU units. These µops include, in
addition to floating-point computations, integer, shuffle, broad-
cast, convert, etc. For the studied application, non floating-
point instructions are generated automatically by the compiler,
but their occupancy of the VPU units reduces the effective
throughput observed by the application. We used Intel SDE [7]
for measuring the application level scalar and vector instruc-
tions, while we used performance counters measurements
reported by LIKWID to measure the µops.

This vectorization efficiency metric averages the efficiency
of exploiting SSE, AVX2, AVX512 (with and without mask-
ing), across different regions of the code. The effectiveness of
vectorization depends on many factors including data align-
ment, loop iteration count, the complexity of the control flow

LU BT SP
H

as
w

el
l

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●
●

roofline_summary_lu_lbl

● Class A
Class B
Class C

c1

c16

c32
c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

roofline_summary_bt_lbl

● Class A
Class B
Class C

c1

c4

c16

c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

●

●

●

●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c4

c16

c64

K
N

L 0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●●

roofline_summary_lu_lbl

● Class A
Class B
Class C

c1

c4

c16

c64c128

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

roofline_summary_bt_lbl

● Class A
Class B
Class C

c1

c4

c16

c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

●

●

●

●

roofline_summary_sp_lbl

● Class A
Class B
Class C

c1

c4

c16

c64

Fig. 4: Scaling trajectories for MPI-based kernels LU, BT, and SP on KNL vs. Haswell, running on a single node. We observe
improvement in performance isolation on shared cache but we generally notice similar scaling trends to those with OpenMP.

instructions, etc. Given that most of the explored codes are
written in Fortran with compile-time known loop bounds, the
compiler’s ability to vectorize these codes is usually high. In
fact, we measured higher vectorization success rate on these
codes compared with a variant of the code written in C. The
flops per instruction are 8 (or 16 for fused instructions3) double
precision flops per vector instruction. The results, shown in
Figure 8, use an estimate of 8 flops per instructions. We
observed the highest efficiency for FT and MG approaching
up to 54%. For LU, BT, and SP the vectorization efficiency
is 22-25%. In general, the vector floating-point µops are less
than 50% of the total µops. For CG, we measured the lowest
Floating-point µops, roughly 19%. The remaining µops are
used to gather and align the data for the efficient vector fused-
multiply-add computations. Such low average efficiency in
vectorization correlates with the hovering below the rooflines
for multiple applications.

Another performance limiting factor on KNL is the run-
time overheads. To quantify such overheads, we used Coral
Clomp [9] benchmark for assessing OpenMP performance. As
shown in Figure 9, the barrier synchronization latency using
64 threads is 4us. This latency roughly doubles at 256 threads.
Generally, we observe the runtime latency to be proportional
to the log of threads on KNL. The runtime performance is

3AVX512 instruction could perform up to 16 double precision floating-point
instructions using fused multiply-add instructions.

also generally better on Haswell compared with KNL for the
same level of concurrency, which is expected because Haswell
has faster cores. On Haswell, the latency increase rate with
concurrency is lower than the log of thread concurrency. This
behavior suggests that scaling is probably benefiting from the
cache hierarchy on Haswell better than KNL.

D. Architectural Exploration for Performance

The presented trends show the challenge in the transition
from one architecture to the other, even if they share more or
less the same ISA. The quest for performance could follow
multiple fronts. First, some applications should put more
efforts into refactoring the code to better leverage the cache
hierarchy at hand. For applications composed of multiple
computational phases, this could be a difficult task to achieve.

The second front would be to explore the architectural
impact on the various application computational pattern. In
this work, we explored two design points, one is characterized
by sharing the LLC, and the other with minimal sharing
of LLC. While we understand that distributed caches are
more scalable in handling many-core architecture, the level
of sharing LLC (i.e., the number of cores per tile could be
changed). Intel Haswell could be viewed as 2-tile (socket)
architecture with 16 cores per tile (socket), while KNL has a
36 tile architecture with 2 cores per tile. Between these two
design points, there are other under-explored design variants.

IS UA
H

as
w

el
l

0.001 0.100 10.000

0.
01

0.
05

0.
50

5.
00

Computational Intensity (Op/Byte)

G
O

p/
s

D
R

AM
 (c

32
) (

12
8)

D
R

AM
 (c

1)
 (1

4.
3)

●

●

●

●

●

●
●

roofline_summary_is_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16

c32c64

0.001 0.100 10.000

0.
01

0.
05

0.
50

5.
00

Computational Intensity (Op/Byte)

G
O

p/
s

D
R

AM
 (c

32
) (

12
8)

D
R

AM
 (c

1)
 (1

4.
3)

●

●

●

●

●

●●

roofline_summary_ua_lbl

● Class A
Class B
Class Cc1

c2

c4

c8

c16

c32c64

K
N

L 0.001 0.100 10.000

0.
01

0.
05

0.
50

5.
00

Computational Intensity (Op/Byte)

G
O

p/
s

D
R

AM
 (c

68
)

(3
75

)

 D
R

AM
 (c

1)
 (1

4)

●

●

●

●

●

●

●
●

●

roofline_summary_is_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16

c32

c64
c128

c256

0.001 0.100 10.000

0.
01

0.
05

0.
50

5.
00

Computational Intensity (Op/Byte)

G
O

p/
s

D
R

AM
 (c

68
)

(3
75

)

 D
R

AM
 (c

1)
 (1

4)

●

●

●

●

●

●

●

●●

roofline_summary_ua_lbl

● Class A
Class B
Class C

c1

c2

c4

c8

c16

c32

c64
c128c256

Fig. 5: Scaling trajectories for OpenMP-based user-defined op kernels: IS
and UA on KNL vs. Haswell. UA’s irregular access pattern benefits from
Haswell’s shared cache.

LU OpenMP weak scaling

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM (c

32) (1
28)

DRAM (c
1) (1

4.3)

roofline_summary_lu_weak_lbl

A.c4

B.c16

C.c64

0.01 0.05 0.50 5.00 50.00

0.
1

1.
0

10
.0

10
0.

0
10

00
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

VFMA (2458)

ADD (c68) (179)

 ADD (c1) (2.8)

DRAM (c
68) (

375)

 DRAM (c
1) (1

4)

roofline_summary_lu_weak_lbl

A.c4

B.c16

C.c64

Fig. 6: KNL provides better weak
scaling than Haswell, but starts from
a lower computational intensity.

0 . 0 %

2 . 5 %

2 0 . 0 %

2 2 . 5 %

2 5 . 0 %

2 7 . 5 %

3 0 . 0 %

Pe
rce

nta
ge

 of
 Sc

ala
r F

lop
 In

str
uc

tio
ns F T M G C G L U B T S P

Fig. 7: Scalar operation percentage for NAS NPB. Some
applications, such as BT and SP, have a significant fractions
of their floating-point operations not vectorized.

Moreover, the level of sharing for L1 is 4 in KNL, while it is
2 for Haswell. Studying the impact of varying cache hierarchy
with the visualization of roofline scaling trajectories could help
on developing better designs. Applications that benefit from
performance isolation would require architectural features that
allow fair resource management of caches. Exploration of such
techniques is beyond the scope of this paper.

0 %

1 0 %

2 0 %

3 0 %

4 0 %

5 0 %

6 0 %

Ve
cto

riz
ati

on
 Ef

fic
ien

cy
 of

 Pa
ck

ed
 Ve

cto
r In

str
s

 F T M G C G L U B T S P

Fig. 8: Average vectorization efficiency on KNL architectures
as a percentage of fully utilized AVX512 instructions (assum-
ing a max of 8 DP flops per instruction).

VI. RELATED WORK

In the distributed memory regime, logP and logGP were
commonly used to model the latency, overheads, and band-
widths of the network communication layer that constrain
inter-node performance and scalability [10], [11]. Although
applicable to understanding MPI-dominate flat MPI execution
models, we have chosen to focus on codes dominated by on-

4 1 6 3 2 6 4 2 5 6
0
1
2
3
4
5
6
7
8

Ba
rri

er
La

ten
cy

 (u
s)

C o n c u r r e n c y

 H a s w e l l
 K N L

Fig. 9: Barrier latency on Haswell and KNL. KNL generally
has higher latency for synchronization for the same level of
concurrency, in addition to having higher concurrency.

node computation where inter-process communication is kept
to a minimum.

The Roofline methodology has been applied to multiple
levels of the cache hierarchy in order to estimate the average
memory bandwidth [2], [12]. However, those experiments
where conducted at fixed concurrency while our experiments
are designed to visualize the interplay between concurrency,
application parallelization strategy, and architecture on per-
formance. The Cache-Aware Roofline Model (CARM) is a
similar technique used to infer locality by comparing average
memory bandwidth to the Roofline ceilings [12]. However,
there are a two major differences with our work. First, CARM
nominally is run at full concurrency whereas we observe
the performance and locality trends as we scale concurrency.
Second, when calculating arithmetic intensity, CARM only
uses the number of loads and stores presented to the L1 cache
where as we use the number of bytes to DRAM after filtering
by all cache levels. As a result, CARM cannot observe any
contention in the cache hierarchy that gives rise to capacity or
conflict misses and superfluous DRAM data movement.

VII. CONCLUSIONS

In this paper, we present the Roofline Scaling Trajectory
technique for analysis. We also extend the use of the Roofline
Model to include user-defined operations. The presented
method helps in identifying the performance dependency of
an application on temporal architectural structures such as
the cache hierarchy. As such, the presented method could
serve both performance analysis for applications as well as
architectural evaluations of cache hierarchies.

Applying our analysis to the NAS Parallel Benchmarks, we
showed the correlation of performance limitations with their
scaling trajectories on the Roofline. For instance, applications
with changing computational intensity, such as BT, SP, and
LU, scaling are likely to face difficulty in achieving roofline
limits. They are the most sensitive to the migration from
between architectures using centralized and distributed cache
hierarchies.

Studying the same application on multiple cache hierarchies
could help distinguishing loss of temporal locality due to con-
currency induced contention from self-interference between

phases of computations for the same thread. This analysis
technique is likely to be instrumental as we move to future
architectures with a wide variety of memory hierarchies.
Although we presented the technique applied to a single
level of the memory hierarchy, extending it to other levels
of the memory hierarchy, including between memory and I/O,
should be straightforward. We believe our technique provides
a simple, yet powerful, visualization analysis for temporal
behavior during scaling.

ACKNOWLEDGMENT

This research used resources in Lawrence Berkeley Na-
tional Laboratory and the National Energy Research Scien-
tific Computing Center, which are supported by the U.S.
Department of Energy Office of Science’s Advanced Scientific
Computing Research program under contract number DE-
AC02-05CH11231.

REFERENCES

[1] R. Dennard, F. Gaensslen, H. Yu, V. Rideout, E. Bassous, and
A. Leblanc, “Design of ion-implanted mosfets with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp.
256–268, 1974.

[2] S. Williams, A. Watterman, and D. Patterson, “Roofline: An insightful
visual performance model for floating-point programs and multicore
architectures,” Communications of the ACM, April 2009.

[3] S. Williams, “Auto-tuning performance on multicore computers,” Ph.D.
dissertation, EECS Department, University of California, Berkeley, Dec
2008.

[4] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The NAS Parallel Benchmarks 2.0,” Technical Report NAS-
95-010, NASA Ames Research Center, 1995.

[5] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and
K. A. Yelick, “The Landscape of Parallel Computing Research: A View
from Berkeley,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2006-183, Dec 2006.

[6] LIKWID, “LIKWID,” https://github.com/RRZE-HPC/likwid.
[7] Intel Software Development Emulator, “Intel Software Develop-

ment Emulator,” https://software.intel.com/en-us/articles/intel-software-
development-emulator.

[8] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. Liu, “Knights landing: Second-generation
intel xeon phi product,” IEEE Micro, vol. 36, no. 2, pp. 34–46, Mar.-Apr.
2016.

[9] G. Bronevetsky, J. Gyllenhaal, and B. R. de Supinski, “Clomp: Ac-
curately characterizing openmp application overheads,” International
Journal of Parallel Programming, vol. 37, no. 3, pp. 250–265, Jun 2009.

[10] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E.
Schauser, R. Subramonian, and T. von Eicken, “Logp: A practical model
of parallel computation,” Commun. ACM, vol. 39, no. 11, pp. 78–85,
Nov. 1996.

[11] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman, “Loggp:
Incorporating long messages into the logp model—one step closer
towards a realistic model for parallel computation,” in Proceedings
of the Seventh Annual ACM Symposium on Parallel Algorithms and
Architectures, ser. SPAA ’95. New York, NY, USA: ACM, 1995, pp.
95–105.

[12] A. Ilic, F. Pratas, and L. Sousa, “Cache-aware roofline model: Upgrading
the loft,” IEEE Comput. Archit. Lett., vol. 13, no. 1, pp. 21–24, Jan.
2014. [Online]. Available: http://dx.doi.org/10.1109/L-CA.2013.6

